Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

نویسنده

  • Jay F Storz
چکیده

In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of hemoglobin adaptation to high altitude hypoxia.

Evidence from a number of vertebrate taxa suggests that modifications of hemoglobin (Hb) function may often play a key role in mediating an adaptive response to high altitude hypoxia. The respiratory functions of Hb are a product of the protein's intrinsic O(2)-binding affinity and its interactions with allosteric effectors such as protons, chloride ions, CO(2), and organic phosphates. Here we ...

متن کامل

Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity.

To assess the adaptive value of the right-shift of the oxyhemoglobin dissociation curve (decreased affinity for oxygen) observed in humans upon altitude exposure, the short-term physiologic responses to altitude-induced hypoxia were evaluated in two subjects with a high oxygen affinity hemoglobin (Hb Andrew-Minneapolis) and in two of their normal siblings. In striking contrast to normal subject...

متن کامل

Hemoglobin Function and Physiological Adaptation to Hypoxia in High-altitude Mammals

Understanding the biochemical mechanisms that enable high-altitude animals to survive and function under conditions of hypoxic stress can provide important insights into the nature of physiological adaptation. Evidence from a number of high-altitude vertebrates indicates that modifications of hemoglobin function typically play a key role in mediating an adaptive response to chronic hypoxia. Bec...

متن کامل

Letter: Increased hemoglobin-oxygen affinity at extremely high altitudes.

Eaton et al. (1) stated that "increased, rather than decreased, oxygen affinity is an effective mode of short-term adaptation to markedly reduced environmental oxygen pressures" and pointed out the need to reevaluate the idea that "decreased hemoglobin-oxygen affinity is of adaptive value to humans at high altitudes." We fully agree with these authors and wish to call attention to the fact that...

متن کامل

Predicting the basis of convergent evolution.

R epeated evolution of similar traits in organisms facing the same ecological challenges has long captured the interest of evolutionary biologists (1–4). Naturally occurring examples of “convergent evolution” offer new opportunities to ask about predictability in evolution. Do complex genomes mean that there are endless possibilities for adapting to an ecological challenge? Or must evolution ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2016